ZnO nanorods for efficient third harmonic UV generation
نویسندگان
چکیده
منابع مشابه
ZnO nanorods for efficient third harmonic UV generation
ZnO nanorods grown by both high temperature vapour phase transport and low temperature chemical bath deposition are very promising sources for UV third harmonic generation. Material grown by both methods show comparable efficiencies, in both cases an order of magnitude higher than surface third harmonic generation at the quartz-air interface of a bare quartz substrate. This result is in stark c...
متن کاملUltra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications
In the present work, tracing and Whatman papers were used as substrates to grow zinc oxide (ZnO) nanostructures. Cellulose-based substrates are cost-efficient, highly sensitive and environmentally friendly. ZnO nanostructures with hexagonal structure were synthesized by hydrothermal under microwave irradiation using an ultrafast approach, that is, a fixed synthesis time of 10 min. The effect of...
متن کاملSurface area-dependent second harmonic generation from silver nanorods.
The nonlinear optical (NLO) properties of metallic nanoparticles strongly depend on their size and shape. Metallic gold nanorods have already been widely investigated, but other noble metals could also be used for nanorod fabrication towards applications in photonics. Here we report on the synthesis and NLO characterization of silver nanorods (AgNRs) with controllable localized surface plasmon ...
متن کاملGreen’s function formulation for third-harmonic generation microscopy
We report a theoretical study of third-harmonic generation (THG) microscopy by use of a Green’s function formulation. The third-harmonic signal under a tight-focusing condition is calculated for samples with various shapes and sizes. Our results show that THG signals can be efficiently generated at a sizable interface perpendicular or parallel to the optical axis or from a small object with a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optical Materials Express
سال: 2014
ISSN: 2159-3930
DOI: 10.1364/ome.4.000701